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A general theory which points out the relations between Hiickel ~'-electron 
energy, the number of Kekul6 structures and the HOMO-LUMO separation 
is presented. Some normalized topological invariants are derived from the 
concept of the spectral density function. A reasonably simple (three param- 
eters) model spectral density function leads to universal relations between 
topological invariants that, although valid for any alternant molecule, were 
tested numerically for polycyclic benzenoid hydrocarbons. Some general 
conclusions concerning a distribution of the adjacency matrix eigenvalues are 
drawn. 
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Introduction 

After more than 10 years in the realm of chemical sciences, chemical topology 
has established a position as an approach enabling us to investigate the molecular 
properties of conjugated compounds. Building a bridge between the abstract 
concepts of graph theory and common experimental observations, this branch 
of chemistry is a proven tool of practical importance. However, as far as n'-electron 
properties are concerned, it seems unavoidable that the focus of applications of 
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chemical topology is on the chemistry and physics of polycyclic aromatic hydro- 
carbons. For these molecules, which have essentially identical carbon-carbon 
bonds and have only one kind of atom involved in the ~--electron framework, 
we have a strong basis for belief in the validity of the Hfickel theory, which is 
one of the building blocks of chemical topology. 

Taking this into account, we decided to suggest in the title of the present paper 
that the approach we present is especially useful in the case of the benzenoid 
hydrocarbons. However, it should be emphasized that utilization of a spectral 
density function, which describes the distribution of eigenvalues of a particular 
Hamiltonian, enables one to construct some approximate relations between graph 
invariants and the electronic properties of any 7r-conjugated molecule; moreover, 
these relations can probably be extended beyond the Hiickel Hamiltonian. 

In the first section of this paper we demonstrate the existence of some general 
relations between topological invariants and both the total 7r-electron energy and 
the HOMO-LUMO separation. The results are used to construct a model approach 
pointing out these relations for benzenoid hydrocarbons, which are finally dis- 
cussed in the third section. 

General relations between normalized topological invariants 

A great part of the work toward elucidation of the stability of conjugated alternant 
molecules on the ground of chemical topology has been devoted to the derivation 
and numerical verification of various approximate formulae that express the total 
zr-electron energy (E~) as a function of the number of carbon atoms (N), 
carbon-carbon bonds (M) and Kekul6 structures (K) [1-8]. Much less attention 
has been directed to analogous expressions for the HOMO-LUMO separation 
(XHL) [8-12], which is another measure of the molecular reactivity [13]. Unfortu- 
nately, a large number of the E~(N, M.K) formulae are incorrect because they 
do not conform to some "first principle" constraints. 

In order to get more insight into this matter one should consider the following 
reasoning. Let A be the adjacency matrix corresponding to some particular 
conjugated molecule Q, and x ~ , . . . ,  Xu be the set of its eigenvalues. The spectral 
density function is defined as: 

N 

F(Q; x) = ~, 6(x-xi).  (1) 
i = 1  

The function F fulfils the relations [7, 8]: 

f +~ F(Q; x) dx = N; 

I +~ F(Q; x)]x I dx = E~; 

(2) 

(3) 
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;7 _ F(Q; x)x 2dx=2M; (4) 

f +~176 x) ln lxl dx= 21n K. (5) 

The last relation is valid only (in general) for benzenoid hydrocarbons. Moreover: 

XHL=2a; a = m a x x :  V F ( Q ; t ) = 0 .  (6) 
x 0 ~ < t < x  

From Eqs. (2)-(6) we learn that the knowledge of F is sufficient to calculate N, 
M, K, E,~ and XHL. However, when we seek to derive an approximate formula 
for E,, (or for XHL) as a function of N, M and K, we impose certain approximations 
on the form of the spectral density function. Being more precise, we hope that 
the knowledge of only N, M and K determines F to a large extent, and then we 
assume that F depends only on these quantities. Only under this strong assumption 
we can expect to express E~ (and XHL) solely in terms of N, M and K. 

Two entirely different kinds of errors in calculated values of E,,(XHL) may arise 
from this approximate formula. First, there is some error due to the fact that F 
also depends on other structural features of A, so that molecules having the same 
values of N, M and K have (we hope only slightly) different E~ and XHL. Second, 
there may be some error because our formula may, on the average, incorrectly 
account for the dependence between E,~(X~L) and N, M, K. 

With the above assumption we put: 

F(Q; x) --- F(N, M, K; x). (7) 

Introducing an auxiliary function 

G(N, M, K; x) = ~ / ~ -  2 , M , K ;  - - x  (8) 

we can rewrite Eqs. (2)-(6) as: 

f+~176 dx=I; (9) 

_ G ( N ,  M, K; x)lx I d x = ~ ,  (10) 

f +OOG(N, M, K;x) x2 dx= 1; (11) 
, ~  o o  - -  

_ G(N,M,K;x) l n x d x = I n ~ .  (12) 

It is not difficult to realize that in order to fulfil Eqs. (9), (11) and (12) for any 
combination of N, M and K, the function G has to depend only on the argument 
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x and the parameter  

K2/N 
k =  2Mx~/N (13) 

which we call the normalized structure count (NSC) [8]. 

From Eq. (10) we arrive immediately at the conclusion that the McClelland 
quotient (MCQ) [7, 8], 

e = 2~-M--~, (14) 

can be expressed solely as a function of k. From Eq. (6) we also see that the 
normalized H O M O - L U M O  separation (NHLS) [8], 

1 XHL 
h - 2 ~ '  (15), 

also depends only on k. 

The above results can be compiled in the following. 

Theorem. Any approximate formulae expressing E~, and XHC as a function of only 
N, M and K must have the form: 

[" K2/TM 7 
(16) 

and 

XHL ----- 2 ~  S L ~ N  j (17) 

where R and S are some functions with the property 

R(1) = 1; S(1) -- 1. (18) 

The relations (18) are easily derived from the fact [8, 14] that, when k = 1, both 
e and h approach their extreme values of  one, which correspond to the function 
F having the form: 

1 
We end this section with some important remarks. The first one is that (unfortu- 
nately) the majority of  the known topological formulae for E,~ do not conform 
to Eq. (16). This calls their reliability into question. Even worse, many of them 
also do not fulfil an obvious size consistency condition: 

E~(uN, uM, KU) = ugh (N ,  M, K); u = 2 , 3  . . . .  (20) 

The above theorem provides us with a general form of E,, which is indeed size 
consistent. 
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The next point is that our considerations remain valid for any conjugated systems 
if we replace the number of Kekul6 structures (K) by the algebraic structure 
count [2]. Finally we point out that what we are offered from Eqs. (16) and (17) 
is the best we can expect if we attempt to calculate E .  and XHL with information 
that is confined to the knowledge of N, M and K. One should therefore realize 
that the results presented in the next section cannot be further improved (except 
by some more sophisticated numerical fitting). This should clean out the plethora 
of reported formulae, of  which some tens are currently known [1]. 

A model spectral density function for benzenoid hydrocarbons 

The general results from the previous section, which have been derived before 
using very particular assumptions about the function F ("the uniform distribution 
approach")  [7, 8], suggest a route for more detailed considerations on the depen- 
dencies between NSC, MCQ and NHLS. Polycyclic benzenoid hydrocarbons, 
BHs, are an especially good field for such an analysis because: 

1. They form a class of  molecules having similar topological characteristics. 

2. Most of the known topological formulae were tested on BHs. 

3. There is a standard set of BHs known to statistically represent the entire class 
of molecules [15]. 

Before making any assumptions about the approximate form of F, we first have 
to check whether there are any reasonable correlations between k, e and h. For 
this purpose we plotted the respective quantities calculated for 1030 singlet ground 
state planar BHs. These plots, which we present in Figs. 1-3, show that, despite 
some scatter in the points, the normalized topological invariants are indeed highly 
correlated. 
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Fig. 1. NSC (k) vs MCQ (e) plot for benzenoid hydrocarbons 

Fig. 2. NSC (k) vs NHLS (h) plot for benzenoid hydrocarbons 
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Fig. 3. MCQ (e) vs NHLS (h) plot for benzenoid hydrocarbons 

Fig. 4. A model spectral density function 

l 
g{• 

~ 2, 

Because of  this, we decided to seek some simple fo rm of  model  spectral  density 
funct ion which could mimic  in a global way the real distr ibution of  eigenvalues.  
The simplest  model  F that  we tested numerical ly  was a saw-like funct ion (Fig. 4): 

fl b> 
For  this par t icular  fo rm of  the spectral  density funct ion b is equal  to ha l f  the 
H O M O - L U M O  separat ion,  v = b / c  describes the relative posi t ion o f  the distribu- 
t ion and s is the slope. The paramete rs  a, b, c and s can be found f rom Eqs. (2)-(5):  

N = 2ac; (22) 

E= = 2ac2[v + �89 (23) 

2M = 2ac3[v 2 + 2v( 1 + As) + (I + As)l;  (24) 

2 In K = 2 a c ( 1 - � 8 9  1) In ( v +  1) - v  In v -  1] 

+2acs  [ ( v +  1) 2 v2 ~ 1 17 In ( v +  1) - - -  In v - s v - s v - g ] .  (25) 
k 2 2 

The  normal ized  topologica l  invariants  can be then found  as [8]: 

11 1414S2 7 1/2 
e = 1 2 1-~ 1 - -  I 1 ; ( 2 6 )  

v + 2v(~+iSs) + (3-~  1 2 s ) J  

[ ( v + ] )  2 
l n k = ( 1 - � 8 9  2 /n ( v + l ) ;  

v2 ] 
- -  tn v-�89188 -�89 tn [v2+2v(�89 (~+~s)]; (27) 

2 

h = v[v2+ 2v(�89 + l s )  + ( �89  - ' /2.  (28) 
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Fig. 5. Relative position (v) vs slope (s) 
correlation 

For the slope s there are several possibilities to be investigated numerically: 

1. We can, with a given s, calculate v from the knowledge of k and then obtain 
estimates of  e and h. The slope can be: 
(a) fixed at s = 0, which corresponds to a rectangular distribution of the eigen- 
values; (b) optimized for the entire set of  BHs. 

2. Another possibility is to calculate s and v from the knowledge of k and e and 
then to seek for a possible correlation between s and v. 

As expected, the second approach gives much better results. Moreover, there is 
a definite correlation between s and v as can be seen from Fig. 5. Having fitted 
a parabola to the points representing the set of  hydrocarbons we end up with 
the following algorithm to calculate NHLS and MCQ if NSC is known: 

1. Solve the system of Eq. (27) and 

s = 0 .902-  4 .82v-  20.35v 2 (29) 

with respect to s and v. One should note, that necessarily v >  0. 

2. From Eqs. (26) and (28) calculate e and h. 

Using this algorithm we were able to draw the theoretical curves in Figs. 1-3. It 
is apparent  that the overall agreement is satisfactory. 

Discussion 

The formalism derived above enables us to highlight some general properties of 
benzenoid hydrocarbons: 

1. It is clear that there is a definite correlation between the total ~r-electron, the 
number of  Kekul6 structures and the H O M O - L U M O  separation. However, these 
quantities have to be normalized properly before looking for any regression 
between them. 
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2. There are two distinct classes ofbenzenoid hydrocarbons. The first one consists 
of the compounds with a relatively small stability (having small values of h, k, 
e and v). These molecules tend to have their adjacency matrix eigenvalues grouped 
at rather high values of energy (slope s > 0). The hydrocarbons belonging to the 
second class are characterized by a high stability and their eigenvalues are 
clustered around the first one (slope s < 0). This means that only two different 
distributions of the eigenvalues are realized: either there is the first eigenvalue 
with a relatively high value of x, which is close to the subsequent eigenvalues, 
or there is the first eigenvalue with a small value of x, but then largely separated 
from the next ones. This observation can have practical importance for photo- 
chemistry, in which we are interested in the accessibility of higher excited 
electronic states whose energy depends in some (indirect) way on the distribution 
of the Hiickel Hamiltonian eigenvalues. 

3. The model can also be used for an approximate calculation of other topological 
invariants like moments of A or the modified topological index Z. 

The theoretical curves drawn in Figs. 1-3 make it possible to perform a fast 
calculation of E~ and XHL without performing any computations. We therefore 
hope that they will provide the organic chemists with a possibility of "paper  and 
pencil" estimation of the stability of benzenoid hydrocarbons. It shouls also be 
pointed out that new reactivity indeces can be constructed by considering deriva- 
tives of F with respect to N, M and K. Work on this problem is in progress. 
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